有限差分法 / 有限体積法 / 有限要素法

有限差分法：微分演算に対しテーラー展開を適用し差分に置き換える

有限体積法：偏微分方程式の体積積分を出発点として離散化近似（積分、微分、補間）する

有限体積法の高次精度化は煩雑（困難）
有限差分法（高次精度の差分）

\[\phi_{i+1} = \phi + \Delta x \frac{\partial \phi}{\partial x} \left[1 + \frac{1}{2} (\Delta x)^2 \frac{\partial^2 \phi}{\partial x^2} \right] + \frac{1}{3!} (\Delta x)^3 \frac{\partial^3 \phi}{\partial x^3} + \frac{1}{4!} (\Delta x)^4 \frac{\partial^4 \phi}{\partial x^4} + \cdots \] (1)

\[\phi_{i-1} = \phi - \Delta x \frac{\partial \phi}{\partial x} \left[1 + \frac{1}{2} (\Delta x)^2 \frac{\partial^2 \phi}{\partial x^2} \right] + \frac{1}{3!} (\Delta x)^3 \frac{\partial^3 \phi}{\partial x^3} + \frac{1}{4!} (\Delta x)^4 \frac{\partial^4 \phi}{\partial x^4} + \cdots \] (2)

式(1)より

\[\frac{\partial \phi}{\partial x} = \frac{\phi_{i+1} - \phi_{i-1}}{2 \Delta x} + O((\Delta x)^2) \] (一次精度)

式(2)より

\[\frac{\partial \phi}{\partial x} = \frac{\phi_i - \phi_{i-1}}{\Delta x} + O((\Delta x)^2) \] (一次精度)

式(1) - 式(2)より

\[\frac{\partial \phi}{\partial x} = \frac{\phi_{i+1} - \phi_{i-1}}{2 \Delta x} - \frac{1}{3!} (\Delta x)^3 \frac{\partial^3 \phi}{\partial x^3} + \cdots \]

\[= \frac{\phi_{i+1} - \phi_{i-1}}{2 \Delta x} + O((\Delta x)^2) = \frac{\phi_{i+1} - \phi_{i-1}}{2 \Delta x} \] (二次精度)

注意: 高次精度になると参照点の数が増える

有限差分法（格子間隔が不等間隔の場合）

中心差分

\[\frac{\partial \phi}{\partial x} = \frac{\phi_{i+1} - \phi_{i-1}}{2 \Delta x_{i+1} + \Delta x_i} \]

不等間隔の場合打ち切り誤差の最大は \[O(\Delta x) \] : 一次精度

改善策: 鍾取り合う格子点間隔を一定の伸縮率 \(r \)とする: \[\Delta x_{i+1} = r \Delta x_i \]

\[\frac{\partial \phi}{\partial x} = \frac{\phi_{i+1} - \phi_{i-1}}{(1 + r) \Delta x_i} + \frac{(1 - r) \Delta x_i}{2} \frac{\partial^2 \phi}{\partial x^2} - \frac{(1 + r^2)(\Delta x_i)^2}{6(1 + r)} \frac{\partial^3 \phi}{\partial x^3} + \cdots \]

2次精度中心差分と同様の精度の解が得られる

重み付き残差法

\[L(u) = 0 \]

\[L(\bar{u}) = R \neq 0 \]

\[\int_{\Omega} w(L(\bar{u}))d\Omega = \int_{\Omega} wRd\Omega = 0 \]

\[R \rightarrow 0 \quad \therefore \bar{u} \Rightarrow u \] (厳密解)
有限要素法

\[
\frac{d}{dx} \left(k \frac{d\theta}{dx} \right) = 0
\]

\[
\int_a^b \theta' \left(\frac{d}{dx} \left(k \frac{d\theta}{dx} \right) \right) dx = \sum_{i=1}^n \left(k \frac{d\theta}{dx} \right) \int_{a_i}^{a_{i+1}} dx = 0
\]

Green-Gaussの定理（部分積分）

\[
\int_{a_i}^{a_{i+1}} \theta' \frac{d}{dx} \left(k \frac{d\theta}{dx} \right) dx - \int_{a_i}^{a_{i+1}} \frac{d\theta'}{dx} \left(k \frac{d\theta}{dx} \right) dx = 0
\]

\[
\left[\theta' k \frac{d\theta}{dx} \right]_{a_i}^{a_{i+1}} - \int_{a_i}^{a_{i+1}} \frac{d\theta'}{dx} \left(k \frac{d\theta}{dx} \right) dx = 0
\]

積分付き残差式（弱形式）

有限要素法

補間多項式（未知関数と同じ：Galerkin法）

\[
\theta' (x) = \Theta' (x) - \Phi'_a (x) \Theta'_a + \Phi'_b (x) \Theta'_b
\]

(a),(b)→弱形式

\[
\int_a^b \frac{d\Theta'}{dx} \frac{d\theta}{dx} dx - \left[\Theta' q \right]_a^b = 0
\]

有限要素法

補間多項式

\[
\Theta(x) = \Phi'_a (x) \Theta'_a + \Phi'_b (x) \Theta'_b
\]

形状関数

第1項

\[
\int_a^b \left(-\frac{1}{h} \Theta'_a + \frac{1}{h} \Theta'_b \right) dx + \left[\Phi'_a q \right]_a^b
\]

有限要素法

有限要素法

補間多項式

\[
\Theta(x) = \left(1 - \frac{x}{h} \right) \Theta_a + \left(\frac{x}{h} \right) \Theta_b \quad (0 \leq x \leq h)
\]

有限要素法

補間多項式

\[
\Theta(x) = \Phi'_a (x) \Theta'_a + \Phi'_b (x) \Theta'_b
\]

形状関数

第1項

\[
\int_a^b \left(-\frac{1}{h} \Theta'_a + \frac{1}{h} \Theta'_b \right) dx + \left[\Phi'_a q \right]_a^b
\]

有限要素法

有限要素法

補間多項式

\[
\Theta(x) = \Phi'_a (x) \Theta'_a + \Phi'_b (x) \Theta'_b
\]

形状関数

第2項

\[
\int_a^b \left(-\frac{1}{h} \Theta'_a + \frac{1}{h} \Theta'_b \right) dx + \left[\Phi'_a q \right]_a^b
\]

有限要素法

有限要素法

補間多項式

\[
\Theta(x) = \Phi'_a (x) \Theta'_a + \Phi'_b (x) \Theta'_b
\]

形状関数

第2項

\[
\Theta(x) = \Phi'_a (x) \Theta'_a + \Phi'_b (x) \Theta'_b
\]
離散化解析手法の比較

有限差分法
- 支配方程式 (積分方程式) → 連立一次方程式
- 差分近似

有限体積法
- 支配方程式 (積分方程式) → 支配方程式の積分形 → 連立一次方程式
- コントロールポリュームで積分
- 離散化近似 (積分、差分、補間)

有限要素法
- 支配方程式 (仮想仕事の原理式) → 連立一次方程式
- 重み付き差分法
- 離散化近似 (補間、積分)

各種手法の長所・短所

<table>
<thead>
<tr>
<th>離散化手法</th>
<th>長所</th>
<th>短所</th>
</tr>
</thead>
<tbody>
<tr>
<td>有限差分法</td>
<td>- 精度が明確</td>
<td>- 物理量は必ずしも保存されない</td>
</tr>
<tr>
<td></td>
<td>- 高次精度化が容易</td>
<td>- 複雑形状への適用がやや難</td>
</tr>
<tr>
<td>有限体積法</td>
<td>- 物理量は保存される</td>
<td>- 高次精度化がやや難</td>
</tr>
<tr>
<td></td>
<td>- 複雑形状への適用が容易</td>
<td></td>
</tr>
<tr>
<td>有限要素法</td>
<td>- 複雑形状への適用が容易</td>
<td>- 複雑形状への適用が容易</td>
</tr>
<tr>
<td></td>
<td>- 高次精度化が比較的容易</td>
<td>- 計算時間が比較的かかる</td>
</tr>
</tbody>
</table>

いずれの手法も、領域型の解法で離散化により得られる連立一次方程式の係数行列は疎 (sparse) で三重対角形 (tridiagonal) を有する。